Measuring EGFR Separations on Cells with ∼10 nm Resolution via Fluorophore Localization Imaging with Photobleaching

نویسندگان

  • Sarah R. Needham
  • Michael Hirsch
  • Daniel J. Rolfe
  • David T. Clarke
  • Laura C. Zanetti-Domingues
  • Richard Wareham
  • Marisa L. Martin-Fernandez
چکیده

Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ~10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ~10 nm resolution while continuously covering the range of ~10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and application of single fluorophore dual-view imaging system containing both the objective- and prism-type TIRF.

Simultaneous detection of two fluorescent markers is important in determination of distance, relative motion and conformational change of nanoparticles or nanodevices. We constructed an imaging system which combines deep-cooled sensitive EMCCD camera with both the objective- and prism-type TIRF. A laser combiner was introduced to facilitate laser controls for simultaneous dual-channel imaging b...

متن کامل

EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth facto...

متن کامل

Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres.

Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and...

متن کامل

Determining the geometry of oligomers of the human epidermal growth factor family on cells with 7 nm resolution.

Dimerisation, oligomerisation, and clustering of receptor molecules are important for control of the signalling process. There has been a lack of suitable methods for the study and quantification of these processes in cells. Here we describe a protocol for a method that we have named "fluorophore localisation imaging with photobleaching" (FLImP), which uses single molecule localisation and sing...

متن کامل

3D super-resolution imaging with blinking quantum dots.

Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013